



Límites Rápidos

José de Jesús Angel Angel

MathCon © 2007-2017

Contenido

1. Límites Rápidos

El siguiente método lo usaremos para obtener límites de funciones de $f: \mathbb{R} \to \mathbb{R}$ en ciertos casos especiales.

Definición 1

Decimos que dos funciones f, g son equivalentes en un punto x_0 , si

$$\lim_{x \to x_0} \frac{f}{g} = 1$$

y se escribe $f \sim g$.

Ejemplos de funciones equivalentes en $x_0 = 0$

- 1. $\sin(x) \sim x$, $\sin(x \to 0)$
- 2. $\tan(x) \sim x$, $\sin(x \to 0)$
- 3. $1 \cos(x) \sim \frac{x^2}{2}$, si $(x \to 0)$
- 4. $e^x 1 \sim x$, si $(x \to 0)$
- 5. $\ln(1+x) \sim x$, si $(x \to 0)$

Ejemplo de funciones equivalentes en $x_0 = \pm \infty$

a) Sea $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ un polinomio de grado n, entonces $P(x) \sim a_n x^n$, si $x \to \pm \infty$.

Propiedades

1. Si $f \sim g$ y $\lim_{x \to x_0} f(x) = a$, entonces $\lim_{x \to x_0} g(x) = a$.

Esto significa que si dos funciones son equivalentes en x_0 , entonces los límites de las funciones son el mismo cuando $x \to x_0$.

2. Si $f \sim g$ y $g \sim h$, entonces $f \sim h$.

Esto significa que la equivalencia de funciones es transitiva.

3. Si $f \sim f_1 \vee g \sim g_1$ cuando $x \to x_0$, entonces $fg \sim f_1g_1 \vee \frac{f}{g} \sim \frac{f_1}{g_1}$ ($x \to x_0$).

Esto significa que podemos usar la equivalencia de funciones sobre productos y división de funciones.

4. Si $g(x) \to 0$ cuando $x \to x_0$, entonces:

$$g(x) \sim \sin(g(x)) \sim \tan(g(x)) \sim \ln(1 + g(x)) \sim e^{g(x)} - 1$$
, en $x = x_0$.

Nota

Por lo tanto para calcular ciertos límites solo se substituye la función equivalente en el límite, de esta manera es posible calcular de forma rápida algunos límites.

2. Ejemplos

1)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$
Sabemos que:
$$\sin(x) \sim x$$
Por lo tanto:
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x}{x}$$

$$= 1$$

2)
$$\lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x}$$
Sabemos que:
$$\sin \alpha x \sim \alpha x$$

$$\sin \beta x \sim \beta x$$
Por lo tanto:
$$\lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x \to 0} \frac{\alpha x}{\beta x}$$

$$= \frac{\alpha}{\beta}$$
Particularmente:
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{3x}{7x}$$

$$= \frac{3}{7}$$

$$\lim_{x \to 0} \frac{\sin \pi x}{\sin ex} = \lim_{x \to 0} \frac{\pi x}{ex}$$

$$= \frac{\pi}{e}$$

3)
$$\lim_{x \to 0} \frac{\sin(3x)}{2x}$$
Sabemos que:
$$\sin(3x) \sim 3x$$
Por lo tanto:
$$\lim_{x \to 0} \frac{\sin(3x)}{2x} = \lim_{x \to 0} \frac{3x}{2x}$$

$$= \frac{3}{2}$$

$$\lim_{x \to 0} \frac{e^{2/3x} - 1}{x}$$

Sabemos que:

$$e^{g(x)} - 1 \sim g(x) \cos g(x) \to 0$$

 $e^{2/3x} - 1 \sim 2/3x \cos 2/3x \to 0$

Por lo tanto:

For lo tanto:
$$\lim_{x \to 0} \frac{e^{2/3x} - 1}{x} = \lim_{x \to 0} \frac{2/3x}{x}$$

$$= \lim_{x \to 0} \frac{2}{3}$$

$$= \frac{2}{3}$$

5)
$$\lim_{x \to \infty} \frac{3x^3 + x + 5}{4x^3 - 3}$$

Sabemos que:

$$3x^3 + x + 5 \sim 3x^3 \text{ con } x \to \infty$$

$$4x^3 - 3 \sim 4x^3 \text{ con } x \to \infty$$
Por lo tanto :

$$\lim_{x \to \infty} \frac{3x^3 + x + 5}{4x^3 - 3} = \lim_{x \to \infty} \frac{3x^3}{4x^3}$$

$$= \frac{3}{4}$$

6)
$$\lim_{x \to 0} \frac{\ln\left(1 + \tan\left(x^2 + x\right)\right)}{3x}$$

Sabemos que:

$$\ln\left(1+\tan\left(x^2+x\right)\right) \quad \sim \quad \tan\left(x^2+x\right)$$

$$\quad \sim \quad x^2+x$$

Por lo tanto:
$$\lim_{x \to 0} \frac{\ln (1 + \tan (x^2 + x))}{3x} = \lim_{x \to 0} \frac{x^2 + x}{3x}$$

$$= \lim_{x \to 0} \frac{x^2 + x}{3x}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$$

Sabemos que:

$$\begin{array}{ccc}
1 - \cos x & \sim & x^2/2 \\
\mathbf{y} \\
\sin^2 x & \sim & x^2
\end{array}$$

$$\begin{array}{rcl}
y & & \\
\sin^2 x & \sim & x^2 \\
\hline
Por lo tanto : & & \\
\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} & = & \lim_{x \to 0} \frac{x^2/2}{\sin^2 x} \\
& = & \lim_{x \to 0} \frac{x^2/2}{x^2} \\
& = & \frac{1}{2}
\end{array}$$

8)
$$\lim_{x \to 0} \frac{e^{\sin(x)} - 1}{\tan(x)}$$

Sabemos que:

$$e^{\sin(x)} - 1 \quad \sin(x)$$

$$\tan(x)$$
 \sim :

$$\begin{array}{ccc}
y \\
\tan(x) & \sim & x \\

& \text{Por lo tanto}: \\
& \lim_{x \to 0} \frac{e^{\sin(x)} - 1}{\tan(x)} & = & \lim_{x \to 0} \frac{\sin(x)}{x} \\
& = & 1
\end{array}$$

9)
$$\lim_{x \to 0} \frac{1 - \cos(\tan(x))}{x^2}$$

Sabemos que:

$$1 - \cos(x) \sim \frac{x^2}{2}$$

$$\tan(x)$$
 $\sim x$

Por lo tanto:

For lo tanto:
$$\lim_{x \to 0} \frac{1 - \cos(\tan(x))}{x^2} = \lim_{x \to 0} \frac{\tan^2 x}{\frac{2x^2}{2x^2}}$$

$$= \lim_{x \to 0} \frac{x^2}{2x^2}$$

$$= \frac{1}{2}$$

10)
$$\lim_{x \to 0} \frac{\ln\left(1 + \tan\left(e^{3x} - 1\right)\right)}{x}$$

Sabemos que:

$$\ln\left(1 + \tan\left(e^{3x} - 1\right)\right) \sim \tan\left(e^{3x} - 1\right)$$

$$\sim e^{3x} - 1$$

$$\sim$$
 $3x$

$$\tan(x)$$
 \sim

$$y$$
 $e^x - 1$
 $\sim z$

Por lo tanto:
$$\frac{\ln (1 + \tan (e^{3x} - 1))}{\ln (1 + \tan (e^{3x} - 1))}$$

$$\lim_{x \to 0} \frac{\ln (1 + \tan (e^{3x} - 1))}{x} = \lim_{x \to 0} \frac{3x}{x}$$

$$=$$
 3

11)
$$\lim_{x \to 0} \frac{\tan\left(x^2\right)}{1 - \cos\left(x\right)}$$

Sabemos que:

$$\tan(x^2) \sim x^2$$

y
 $1 - \cos(x) \sim x^{2/2}$

$$\tan (x^2) \sim x^2$$

$$y$$

$$1 - \cos(x) \sim x^2/2$$
Por lo tanto:
$$\lim_{x \to 0} \frac{\tan (x^2)}{1 - \cos(x)} = \lim_{x \to 0} \frac{x^2}{x^2/2}$$

$$= 2$$

12)
$$\lim_{x \to 0} \frac{e^{(1-\cos x)} - 1}{x^2}$$

Sabemos que:

Sabemos que:

$$e^{(1-\cos x)} - 1 \sim (1-\cos x)$$

 $\sim x^2/2$

Por lo tanto:

Por lo tanto:

$$\lim_{x \to 0} \frac{e^{(1-\cos x)} - 1}{x^2} = \lim_{x \to 0} \frac{1-\cos x}{x^2}$$

$$= \lim_{x \to 0} \frac{x^2/2}{x^2}$$

$$= \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\sin^2 x}{2x^2 \cos x}$$

Sabemos que:

 $\sin x \sim \tan x$ $\sim x$

Por lo tanto :
$$\lim_{x \to 0} \frac{\sin^2 x}{2x^2 \cos x} = \lim_{x \to 0} \frac{\sin x \sin x}{2x^2 \cos x}$$
$$= \lim_{x \to 0} \frac{\sin x \sin x}{2x^2 \cos x}$$
$$= \lim_{x \to 0} \frac{\sin x \tan x}{2x^2}$$
$$= \lim_{x \to 0} \frac{x^2}{2x^2}$$
$$= \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{8x^3}$$

Sabemos que:

$$\sin x \sim x$$

 y
 $(1 - \cos x) \sim x^2/2$

Por lo tanto:

For lo tanto:
$$\lim_{x \to 0} \frac{\sin x - \sin x \cos x}{8x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{8x^3}$$

$$= \lim_{x \to 0} \frac{xx^2/2}{8x^3}$$

$$= \frac{1}{16}$$

Tenemos que:
$$\ln(\cos x) = \frac{1}{2}\ln(\cos^2 x) \qquad \text{ya que} \quad \ln(\cos^2 x) = 2\ln(\cos x)$$

$$= \frac{1}{2}\ln(1-\sin^2 x) \qquad \text{ya que} \quad \sin^2 x + \cos^2 x = 1$$
Por otra parte:
$$\ln(1-\sin^2 x) \sim -\sin^2 x$$

$$\sim -x^2$$

$$y$$

$$\tan x^2 \sim x^2$$
Entonces:
$$\lim_{x\to 0} \frac{\ln(\cos x)}{\tan(x^2)} = \lim_{x\to 0} \frac{1}{2} \frac{\ln(1-\sin^2 x)}{\tan(x^2)}$$

$$= \frac{1}{2} \lim_{x\to 0} \frac{1}{x^2} \frac{\ln(x^2)}{x^2}$$

$$= -\frac{1}{2}$$